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SOLVING DEFICIENT POLYNOMLAL SYSTEMS 
WITH HOMOTOPIES WHICH KEEP THE SUBSCHEMES 

AT INFINITY INVARIANT 

T. Y. LI AND XIAOSHEN WANG 

ABSTRACT. By a deficient polynomial system of n polynomial equations in n 
unknowns we mean a system that has fewer solutions than that predicted by 
the total degree, or the Bezout number, of the system. If the system is m- 
homogeneous, the Bezout number can be considerably reduced. In this paper, 
we introduce a homotopy for numerically determining all isolated solutions of 
deficient m-homogeneous systems. The initial polynomial system Q is chosen 
which keeps the subschemes of H(x, t) = (1 - t)aQ(x) + tP(x) at infinity 
invariant when t varies in [0, 1). 

1. INTRODUCTION 

Let P(x) = 0 denote a system of n polynomial equations in n unknowns. 
Denoting P = (P1, ... , Pn), we want to find all solutions to 

(1.1) (XI * , Xn) = ? , Pn(XI Xn) = Os 

for x = (xl, ..., xn) E c". The homotopy continuation method for solving 
this system is to define a trivial system 

(1.2) Q(x) = 0 

and then to follow the curves in the real variable t which make up the solution 
set of 

(1.3) 0 = H(x, t) = (1 - t)Q(x) + tP(x). 

More precisely, if Q(x) = 0 is chosen correctly, the following three properties 
hold: 

1. (Triviality) The solutions of Q(x) = 0 are known. 
2. (Smoothness) The solution set of H(x, t) = 0 for 0 < t < 1 consists 

of a finite number of smooth paths, each parametrized by t in [0, 1). 
3. (Accessibility) Every isolated solution of H(x, 1) = P(x) = 0 is reached 

by some path originating at t = 0. It follows that this path starts at a 
solution of H(x, 0) = Q(x) = 0. 
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When these three properties hold, the solution paths can be followed from 
the initial points (known because of property 1) at t = 0 to all solutions of the 
original problem P(x) = 0 at t = 1, using standard numerical techniques [1]. 

It is important to realize that even though properties 1-3 imply that each 
solution of P(x) = 0 will lie at the end of a solution path, it is also consistent 
with these properties that some of the paths may diverge to infinity as the 
parameter t approaches 1. (The smoothness property rules this out for t - 

to <1.) 
This method has the virtue of locating all isolated solutions of the system 

P(x) = 0. A typical choice of Q that satisfies the three properties [9, 14, 17] is 

di dn 

ql (X) c C l(Xl -o ali) '***'q, (x) = C ][|(Xn -ani)X 
i=l i=l 

where d1, ... , dn are the degrees of p I(x), ... , p (x), and c, aji are random 
complex numbers where c $ 0 and aji are distinct. In this case, the number 
of paths which need to be followed to arrive at all solutions of P(x) = 0 is 
the product d - d... dn. This number, often called the Bezout number, or 
total degree, of the system, is a classical upper bound on the number of isolated 
solutions, counting multiplicities. However, in most practical cases we have 
seen, the number of solutions of (1.1) can turn out to be smaller than d, and in 
some cases only a small fraction of d. Such systems are called deficient. When 
applying homotopy continuation methods to a deficient system, sending out d 
paths in search of solutions, the paths which do not converge to solutions of 
(1.1) will go to infinity, representing wasted computation. 

For deficient systems, various homotopies have been introduced [10, 1 1, 12, 
15, 16]. In [15], the m-homogeneous structure of (1.1), when it is available, is 
used to reduce the Bezout number and hence the number of paths needed to be 
followed. Given a polynomial p of degree d in the n variables x1, ... n, 
we can define its homogenization 

P (oX.xn) = (xo) dp(XI/xo x1/xO). 

For the polynomial system P = (P1, . P. , Pn) we use P to represent ( **, 

PO) A typical suggestion in [10-12] for deficient polynomial systems is to 
choose Q(x) so as to share a similar type of deficiency as P(x), with the 
basic assumption that the zeros of Q(x) at infinity, i.e., the zeros of Q(x) 
with xo = 0, are nonsingular, so that the accessibility is guaranteed with a 
considerably reduced number of solution paths needed to be followed. 

In reading [16], we discovered a flaw in the theorem which formed one of 
the bases in the article. The authors basically claimed a general result that the 
nonsingularity of the zeros of Q(x) at infinity can be replaced by the following. 
Let the common zeros of P and Q in (1.3) at infinity be denoted by S. If for 
each s E S the multiplicity of s as a solution of Q(x) = 0 is less than or equal 
to that of s as a solution of P(x) = 0, and all other zeros of Q(x) are isolated 



SOLVING DEFICIENT POLYNOMIAL SYSTEMS 695 

(0,1,0) (0,1,0) 

(1,1,-i) (1,10, 0) 

(1,-1,1) -- (1,-i, -1) 

t=0 t= 1 

FIGURE 1 

The four solution paths 

and nonsingular, then for generic a E C, by following the solution paths of 

(1.4) H(x, t) = a(1 - t)Q(x) + tP(x) = 0, 

starting from the isolated zeros of Q(x) outside S, one can obtain all isolated 
zeros of P(x) = 0 outside S. This assertion can be shown to be in error, as 
the following example indicates. 

Example. Let P = (P1 , P2) and Q = (q, X q2) be defined by 

(1.5) p1(xl, x2) = +x1, p2(x1, x2) = x2+ x2, 
(1.6) q1(x1, x2) =x2-1, q2(x1,x2)= x2 + xx2. 

The common solution set of P(x0, x1, x2) = 0 and Q(xO, X1, X2) = 0 at 
infinity is (0, 1, 0) with multiplicity 2. However, for any nonzero a E C 
which is not a negative real number, by following the solution paths of (1.4) 
starting from the two zeros of Q in affine space (1, -1, 1) and (1, 1, -1), 
one can only find one of the isolated zeros of P(x), (1, -1, -1), in affine 
space. For a = .59032965 + .15799344i the computed results are shown in 
Figure 1. The solution path starting with (1, -1, 1) can reach (1, -1, -1) 
and the solution path starting from (1, 1, - 1) goes to infinity as t tends to 1. 
A theoretical proof of this assertion for general a is given in the Appendix. 

In view of this counterexample, we suggest in this paper an alternative which 
guarantees the accessibility of the homotopy for deficient polynomial systems. 
In our homotopy, we choose Q(x) in such a way that its subscheme at infinity 
contains the subscheme of P(x) at infinity. Then, for generic a E C, the 
subschemes of H(x, t) in (1.4) at infinity remain the same for all t E [0, 1). 
Consequently, solution paths of (1.4) originated at zeros of Q(x) in affine space 
stay in affine space for all t E [0, 1). As a result, the typical assumption of 
nonsingularity of Q(x) at infinity in [10-12] can be dropped. 

Our main results are stated in ?2 and proved in ? 3 for general m-homogeneous 
deficient polynomial systems. When m = 1 the conditions given in Theorem 2.1 
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and Proposition 2.1 are equivalent to condition (2.4) of Theorem 2.3 in [12]. 
However, our condition is much easier to verify. In ?2, we also give several 
examples to which our main results apply. 

2. THEOREMS AND APPLICATIONS 

The complex n-space Cn can be naturally embedded in complex projective 
space 

Pn =I(XO1 "' I Xn) ECn \(0X 0)1/X 

where the equivalent relation "'" is given by x y if x = cy for some nonzero 
c E C. Similarly, the space N = Cki x ... x Ckm can be naturally embedded in 
M=P kI X ...xPkm. Apoint (Yi' ...Ym) in N with yi i= 

1, ..., m, corresponds to a point (zl ..., Zm) in M with z,= (zO. .. Zk) 
and z1 = 1, i = 1, ..., m. The set of such points in M is usually called the 0 

afijne space in this setting. The points in M with at least one zo = 0 are called 
the points at infinity. 

Given a polynomial p in the n variables xi, ..., xn, if we divide the 

variables into m groups y1 = (xl, ...,x ), Y2 = (x Xk, .., x, ), .Ym = 

(xl,..., x) with k1 +*** + km = n and let di be the degree of p with 
respect to Yi, then we can define its m-homogenization as 

I 
dl ( Z0m)dmp (Y1 /Zo Ym o)X fi3(z, . ,Zm) = (ZO)dI x . x (4)dp(1/0 . M.. 

which is homogeneous with respect to each zi = (zoX ... , Z E Pi X i = 

1,..., m. Here, zJ = x), for j $0 . Such a polynomial is said to be m- 
homogeneous. To illustrate this definition, let us consider the polynomial 

p()',xI,.,xn)= A2(ax1+ +anxn -a) 
+ A(bixi + * * * + bnxn -b) + (clxl + ***+ Cnxn -C). 

We may let YI = (A),1 Y2 = (xl I, xn) and ZI = (AO0X A) IZ2 = (XO0, Xl, I T 
xn). The degree of p is 2 with respect to Y, and 1 with respect to Y2. Hence, 
its 2-homogenization is 

pf(AO X A X Xo X Xi XnX,) = A 2(aixi + * * * + anxn - axo) 
+ AAO(bIxI +* + bnxn--bxo) 

+ 2((C x1 + ... + C x - 

which is homogeneous with respect to (AO , A) and (xo, xi, ..., xn). 
For z= (zo ...Z) E Pki, i =1,...,m, let S = C[z , .. .,zm ] be 

the ring of polynomials in the variables zi with complex coefficients. If A is 
an ideal and T is a prime ideal of S, then denote by AT the ideal 

AT = {f E Slhf E A for some h 0 T}. 
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For a point Z = (zi ..Zm) E Pk . X x P kmm, let Iz denote the maximal 
ideal {f E Slf(z) = O}. If fl, ..., f, are m-homogeneous polynomials in 
the variables (zli . Zm) E pki X *. X pkm we denote by V(fi, ..., fr) 
the common zero set of fi, ... , fr in pk x... x pkm . We say a point y E 

V(fl, ... , fr) is nonsingular if 

rank (z,..., Z) =codimy(V(fl, .fr), PkX...X pkm), 

where codim denotes complex codimension. We denote by (f1, ..., fr) the 
ideal generated by f1, ... , fr. To be more precise, (f1, ... , fr) is the set of 
all polynomials of the form 

gifi X 
i=1 

where the gi's are polynomials in S. 
Given the system P(x) = (Pi (x), ... , pn(x)) in (1. 1), let Q(x) = (q1 (x), 

* qn(x)) and 

(2.1) H(a, x, t) = (1 - t)aQ(x) + tP(x), a EC. 

Here, we consider x E Cki x Ck2 x ...x Ckm with kI+k2+***+km =n, t 
real and degpi = degqi, i = 1,..., n. Let 

(2.2) H(a, z, t) = (1- t)aQ(z) + tP(z), k k 

te[O, 1], zeM=P X...XPm, 

which is the m-homogenization of (2.1). Let (Q) = (41, ...n, ) and (P) = 

(PI . n) . Our main results are the following. 

Theorem 2.1. Suppose that the polynomial system Q in (2.2) has the following 
properties: 

(1) for every point z at infinity, (Q)Iz D (P)Iz; 

(2) the set T = {the points of V(41, ... - n) in affine space} consists of 

nonsingular isolated points xl, ... ., xr . 

Then there exists an open dense subset D of C with full measure, such that for 
a-I chosen from D, we have 

k (a) (Smoothness) For each isolated zero x E T, k = 1, ..., r, there is 
a function x k(t): [O, 1] M which is analytic and contained in afJine 

k spacefor all t in [0, 1) and satisfies H(a, x (t), t)=0. 

(b) (Accessibility) Each isolated solution of P(x) = 0 is reached by x k(t) 
for some k at t = 1 . 

Remark 2.1. If z 0 V(pI, ... , Pn), then there exists an h E (fi. , in) 
such that h(z) $ 0, i.e., h 0 Iz. Thus, (P)Iz = {f E Slfh E (P) for 
some h 0 Iz} = S. Hence, condition (1) above implies that every point 
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of V(41, ...4, q) at infinity is also a point of V(P1, ..., P By the same 
argument, if z 0 V(41, ... , 4,), then (Q)Iz = S, and (1) is obvious. So, 
in order to check condition (1) of Theorem 2.1 one only needs to check this 
condition for those points at infinity which lie in V(41, ... , ,) . Consequently, 
condition (1) implies that the subscheme at infinity of the polynomial system 
Q(z) contains the subscheme of P(z) at infinity. (For general definitions and 
properties of scheme and subscheme, see [7, pp. 60-190].) 

Remark 2.2. By a straightforward verification one can easily see that ((Q)Iz)'z = 

(Q)z. Hence, if (Q)'z D (P), then (Q)'z D (P)'z. 

Remark 2.3. In the counterexample (1.5), (1.6) of ?1, 

2 2 
1(XO X X1, X2) = X2 + XXOX P2(XO X X1 X X2) = X2 +x2XO 

2 2 2 
4I(x0, X1 X2)= X2-XO, q2(X1 X, X2) = X2 +X1X2. 

At z = (x0, x1, x2) = (0, 1, 0), (Q)Iz W (P)Iz . This can be shown as follows. 
- 

Q 

Since i2 -11 = xO(x2 - x1) E (P)lz and x2 - x1 0 at z = (0, 1, 0), we have 
x0 E (P)Iz * Thus, x2 E (P)2z* S(P)P)z = (x0, x2). Since (42 - 41)X2 - =1 = 

x0(x1 + x2) E (Q)Iz and x1 +x2 #0 at z, we have x4 E (Q)Iz . Therefore, 
(Q)Iz = (x2, xo). Evidently, (Q)Iz I (P)Iz 

The following proposition indicates that Theorem 2.1 is a generalization of 
the main result in [10]. 

Proposition 2.1. Suppose that the polynomial systems Q, P in (2.2) have the 
following properties: 

(1) every point of V(Q) at infinity is also a point of V(P); 
(2) the set T = { the set of points of V(Q) in afijne space } consists of 

nonsingular isolated points. 
Then for a nonsingular point z of V(Q) at infinity, (Q)Iz D (P)Iz 

Example 2.1. Suppose we want to solve the system 

(2.3) p1(x,y) =xy+y+ 1 =0, p2(x,y) =x3y2-xy+ 1 =0. 

By considering (x, y) E C1 x C1, we may 2-homogenize (2.3) as 

(2.4) 31 (x0, x, y0, Y) = xy + x0y + x0y0 = 0, 
(2.4) ~~~~3 2 2 3 2 

f2(XO 0x, yO y)= x y - xxOyyO + xoyo = 0, 

where (x0, x, y0, y) E P1 x p1 . Then this system P = (PI1, P2) has one solu- 
tion (0, 1, 1, 0) at infinity with multiplicity 2, and three affine solutions. Our 
starting system Q = (q1, q2) can be chosen as 

(2.5) q1 (x, y) =xy + y + 1 = 0, q2(x, y) = X3y - xy = 0. 
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Its 2-homogenization is 

4i (xO, x, yO, y) = xy + xOy + xoyo = 0, 

42(x0Xx,y0,y)=X3y2 -XXOyyO=0 

The system Q has three nonsingular solutions (x, y) = (0, -1), (-1/2 + 
vXi/2, -1/2 + V3_i/2) and (-1/2 - V3Xi/2, -1/2 - V3Xi/2), and its solution 

2 2 2 
at infinity is the same as that of P. Write 42 = xg with g = x y - xoyoy. 

Since x 0 at z = (0, 1, 1,0), we have x 0 Iz, so, g e (Q)Iz. Further, 

41xy- g =xoy(xoyo+xy+xyo) E (Q) z and xoyo+xy+xyo 0 0 at z imply 
x0y E (Q)Iz . Since xOy041 E (Q)Iz , we have xoyo = xoyOql -xoy(xyo+xoyo) E 

(Q)z and thus P2 = 2 + xO(xoyO) E (Q)z . Along with 1 = E (Q)1z, we 

have (Q)z D (P-)'z . So Theorem 2.1 applies. It provides a homotopy and three 

paths, beginning from the roots of (2.5), which lead to all roots of (2.3). 
Table 2.1 shows the computed results. 

TABLE 2.1 
Solutions to (2.3) 

Parameter a =-.13960695 -.6281187i 

Starting Point Solution Reached 
x y x y 

1 0 - 1 -.4301591 -1.7548765 

2. -1/2 + vi/2 -1/2 + Vi/2 -.78492 +1.307138i -.1225614 +.7448609i 

3. - 1/2 - VXi/2 -1/2 - Xi/2 -.78492 - 1.3071413i -.1225611 - .7448618i 

The notion of m-homogeneous, when m = 1, is the same as homogeneous. 
For homogeneous polynomials f1, ..., fr we use (f1, ... X fr)e to denote the 
subset of (f1, ... , fr) consisting of homogeneous polynomials of degree e. 
In [12], the following condition on P, Q in (2.2) is used to guarantee the 
accessibility of the "random product homotopy" paths: For each positive integer 
k, 

(2.6)kk ~~~~~(2.6 (4l n X XO )e D (Pi~ fi1 n X XO )e 

for all sufficiently large e. 
The following proposition shows that condition (2.6) is equivalent to condi- 

tion (1) in Theorem 2.1 when m = 1 . However, we shall illustrate in Example 
2.2 that condition (1) in Theorem 2.1 can be much easier to verify. 

Proposition 2.2. Suppose that the polynomial systems P and Q in (2.2) are 
homogeneous. Then for every point z at infinity, (Q)Iz D (P)'z if and only if 
for each positive integer k, 

for al s ik k l k 
(di ' n XXO )e D (P1X ** Pi XO )e 

for all sufficiently large e . 
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Example 2.2. The following system is the mathematical model of a lumped- 
parameter chemically reacting system [2]: 

PI (XI ) 2 X3 IX4) =-ail l(1 - X3 - X4) + a2X3 - 
(XI 

- bl), 

2.7) P2(X1 X2, X3, X4)= -a3X2(l - X3- x4) + a4X4 - (X2- b2), 
(7) P3(XI, X2, X3, X4) = alxl(l - X3 - X4) - a2X3 - a5X3X4 

p4(XI, X2, X3, X4) = a3X2(l - X3 - X4) - a4X4 - a5X3X4. 

While the Bezout number of the system P = (P1, P2, P3, p4) is 16, for generic 
a I's and b,'s there are only four zeros of (2.7) [2]. Define Q = (ql, q2, q3, q4) 

by 

q, (xl X2, X3, X4) = (X1 - )(l - -X4) 

(2.8) q2(Xl 5 X2, X3, X4) = (X2 - i)(2 - X3 -X4), 

(2.8) q3(xI x2, X3, X4) = x1(2 - X3 - X4) + X3X4, 

q4(Xl, X2, X3, X4) = (X2 + l)(l - X3 - X4) + X3X4. 

The homogenization Q of Q is 

41(X0O X1, X2, X3, X4) = (X1 - XO)(XO - X3 -X4), 

(2.9) 42(xO 5 
X1, X2, X3, X4) = (X2 - ixo)(2x0 - X3 -X4) 

43(XO s XI X2 s X3 5 X4) = x, (2xo - X3 -X4) + X3X4,5 

X4(x0 x1, X2, X3, X4) = (X2 + XO)(XO -X3 
- X4) + X3X4. 

The points of V(Q) at infinity are (xo, X1, X2, X3, X4) = (0, 0, 0, 0, 1), 
(0, 0, 0, 1, 0) and a line I = (0, xl, x2, 0, 0). The rank of 

r 1 -1 0 0 01 
a( 'I 42' 53' q4) 1 i 0 -1 0 0 

(XO5 XI, X2,~ X3, X4) (0,0,0,0,1) -l 0 -1 1 0 

is 4 and hence, (0, 0, 0, 0, 1) is nonsingular; similarly for (0, 0, 0, 1, 0). 
These two points also belong to V(P). Further, the system (2.8) has four 
nonsingular isolated zeros: (X1, X2, X3, X4) = (1, -1, 0, 2), (1, -1, 2, 0), 
(0, i, 0, 1), and (0, i, 1, 0). So, Proposition 2.1 applies. That is, 

('hg q25 q3, q) 4 -1., P2, P3' P) 

for z = (0, 0,00, 1), (0, 0,0, 1, 0). For z E I = (0, xl, x2, 0, 0), either 

xI #0 ? or x2 $O 0, say xl #0 . Then xl - xo $A 0 at z. So, from q-, 

(2.10) x-x3-x4E (Q)z. 

It follows from q-4 , that x3X4 E (Q)Iz and hence xl (2xo - X3 - X4) E (Q)IZ, 

from q3 . Since xl #0 at z, we have 2xo - - X4 E (Q)Iz . Comparing with 
(2.10) yields xo E (Q)Iz . Accordingly, it is easy to see that (Q)Iz D (P). Thus 
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by Remark 2.2, we have (Q)-z D (P)Iz . So Theorem 2.1 provides a homotopy 
and four paths which lead to all roots of (2.7). 

Table 2.2 shows the computed result. 

TABLE 2.2 
Zeros of (2.7) in C4 

Parameters 

a, = .76771879 + .32820278i a. = .89248163 + .45296562i 

a. =.54890949 +.1093949i bi =.04796080 +.88868678i 

a = .33010021 +.89058417i b = .82915151 + .66987747i 
a4 = .11129092 +.67177492i a = .59527814 +.71154547i 

Starting Points Solution Reached 

1. xi = 1 x2 =-1 xI = -.731938 +.3453089i x2 =.049258 +.1264814i 

=X- 0 X4 = 2 x3 = 2.9605355 + 7.79467i x4 = .0547949 - .0998576i 
2. x, = 1 x2 = -1 x = -2.214090 + 1.074372i x2 = -1.43290 +.8555617i 

xz = 2 X4 = 0 X3 = .6873539 - 1.0286067i x4 = 1.6660806 + .7643948i 
3. xi = 0 x7 = I xI = 0.433732 + .750366i = .8245659 + .53155661 

Xt = 0 X4 = I xt = .1027011 +.2787743i X4 = .4602318- .0694782i 

4. x==0 =i x1 = .8908184 -.8041871i x2 = 1.6720086 - 1.0229946i 

X3 = 1 x2 = 0 x3 = 1.6573049 - 1.607046i X4 = -.5652349 + .591969i 

Example 2.3. For generalized eigenvalue problems (or A-matrix problems), the 
system P has the following form: 

( ) ~~~~ABx + Ak- Bl + *+ Bx = O 

w 
+ 

ahexe 
+ 

*(* *x+ anXn B B 
where x = (xl ,.xn) , k > I , and Bo0 , Bk are n x n matrices. Consider 

(..A., x xn) E C1 x Cn. With 2-homogenization, (2.11) becomes 

(2.12) A Box + 
k 
k?OB,x +1x + (O0) Bkx = O, 

x0 + a1x1 + * * * + anXn = 

with (AO, , xA , ... , xn) E P1 x pnf. If Bo is a nonsingular matrix, it is quite 
obvious that (2.12) has kn solutions for generic c i's. In [4], a homotopy is 
given for nonsingular Bo, which provides kn paths leading to all roots of 
(2.1 1). 

Here, we give an example to which Theorem 2.1 can be applied when Bo is 
singular. For n = 3 and k = 2, let 

-O I O- -O 1 O' -1 0 O- 

Bo = ? 1 0 B1 0 1 B2 = l 0 1, 
0O 1 L 0 0 L OJ 
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and a l a = 1 . Then (2.12) becomes 

P = A X2 + AX2+ X = 0 

(2.13) P2 =.X2 
+ 
) O)X3+)X3 

= 0, 

2= ix3 +A .)x1 +A )x2 = 0, 

4 = xO +x +x2 +x3 = 0, 

and the solution set at infinity is v = {(A%,O , xA , xO , x2, x34X3 = 0, i = 1, 
x2 = 0, xO + xI = 0, x3 = 0}. Define Q = (ql, q2, q3, q4) by 

q, = (A - 1)(A - 2)X2 = ?, 

(2.14) q2 = (A- 3)(A- 4)x3 = 0 

q3 = (A - 3)(A - 4)x3 + AxI = 0 

q4 = 1 + xI + x2 + x3 = 0. 

It is easy to check that the zero set at infinity of 

41 = (A- A0)(A- 2AO)x2 = , 

(2.15) 
42 = (A - 3AO)(A- 4AO)X3 = 0 

43 = (A - 3o) () - 4AO)x3 + AAOxI = 0, 

44= X0 + X + X2 + X3 = 0 

is the same as that of (2.13). The system (2.14) has five nonsingular solutions 
(A, XIX2 X3) = (0, -1,0,0), (1,0,-I, 0), (2,0,-I, 0), (3,0,0,-1), 
and (4, 0, 0, -1). For any z E v, we have AO = 0 and ) = 1, hence 
(A - 3.)(A - 4).) #0 and (A - .)(A - 2)O) $0. From q, and 42, both x2 
and x3 are in (Q)z, and from q3 AXl E (Q). In summary, (Q)1 D (P)z 

and Theorem 2.1 applies. 
Table 2.3 shows our computed results. 

TABLE 2.3 
Solutions to (2.13) 

Parameter a = -.74127114 + .70628309i 

XI X2 x3_ _ _ _ _ _ _ _ _ _ 

1. -4.0795970 3.075972 0 .7548779 

2. -.4602 - .1825814i -.5397982+ .1825814i 0 -.8774412+ .7448597i 

3. -.4602 +.1825814i -.5397982 -.1825814i 0 -.8774414 -.7448597i 

4. -.33333333 -.333333333 -.3333333 -.5 - .866025i 

5. -.33333333 -.333333333 -.3333333 -.5 + .866025i 

3. PROOFS OF THE THEOREMS 

In this section we prove Theorem 2.1, Proposition 2.1, and Proposition 2.2. 
Some fundamental results in algebraic geometry are necessary. 
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We recall the notations introduced in the last section: M = Pkl X .. P >km 

with k1 + + km = n, and S = C[z,..., Zm]I the polynomial ring, where 
i I k 

zi = [z0. ..zk E P i, i = 1,.. .,m. Let R be a ring of polynomials 
(perhaps a quotient of S) and q a prime ideal of R. We denote by R(q) the 
localization of R at q. The local ring R(q) is made up of "formal fractions" 

{-If E R, g ? q, degf = degg with respect to each zi, i = 1, ... m} 

such that L; if and only if fig2 = f2g, in R 91 92 

Lemma 3.1. Let A and B be two ideals of S, and z E M. If AZ = BIz, then 
A(1) = B(4) I 

Proof. For E B , we have b E B and f(z) :$ 0. Since AIz =BIz D B, 
there exists g E S such that g(z) $ 0 and gb E A. Thus, fg E A(1 )I so, 

A(z) D B(z). By the same argument, B(z) c A()z. 0 

Given a system of polynomials P(x) = (p1 (x), ...p, p(x)), let Q(x) = 

(q1(x), ... , qn(x)) with degpi = degqi . Here we consider x E Ck x ... X Ckm 
with k1 + * + km = n. Define the homotopy 

(3.1) H(a, x, t) = (1 - t)aQ(x) +tP(x), t e [0, 1], a EC, 

with m-homogenization 

(3.2) H(a, z, t) = (1 -t)aQ(z)+tP(z), t E [0, 1], a E C, z E M. 

Lemma 3.2. If 

(3.3) (Q) (P)IY 

for any point y at infinity, then there exists a subset DI of C, 

D1 {rei E CIO E [O, 27r)\F, F a finite set, r > 0}, 

such that for any y at infinity and c E DI 

(3.4) = QI ( 3 4) ~~~(41 + CpI 4 n + cPn )I (Q 
Proof. From (3.3), for any y at infinity we have 

adP. = by 41 + + byd 4n i I ,... n, 

where a, by E S and ay(y) 0, i = 1,..., n, j= 1,...,n. Thus, 

a (4l + cp,1) = (ay + cby'1)4, + + cbycd, 

(3.5) 

an(cn + CPn) = cbny, c + + (ay + cby 
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for any c E C. For f E ( + cp,..., +n + c Y) there exists an h E S such 
that h(y) : 0 and 

n 
(3.6) fh = E di(qi+cI3), 

i=1 

where di E S, i = 1, ..., n. Multiplying both sides of (3.6) by ay x x ay 
and using (3.5), we have f E (Q)'Y . Hence, 

for any c E C. For the reverse inclusion, we let 
[aly(z) + cby(z) cby (z) 

(3.7) Ay(c, z) =2cb (z) cb2(z 

L cby(z) ... a(z)+cb(z) Cn I(z) anYZ +Cnn(Z) 

then (3.5) can be written as 

[ay(41 + CPJ) 11 
(3.8) 1 =Ay(c,z) [ 

Let By(c, z) be the determinant of Ay(c, z) and Ay(c, z) be the adjoint 
matrix of Ay(c, z). Multiplying both sides of (3.8) by Ay(c, z) yields 

[aY(-, + cP1) 1 
(3.9) A(C, Z) . B(C z). 

LaGi n+c~) J [cn J 
Consider By(c, z) as a polynomial in C x M. Denote its homogenization 

with respect to c in Pl x M by By(co, c, z). Let B be the ideal generated 
by the By s. Its zero set at infinity, denoted by v, is an algebraic set. Let 

7: P1 x M -- p1 be the natural projection. By the proper mapping theorem 
[5, p. 64], 7I (v) is an algebraic set in P 1. The only algebraic subsets in P1 are 
the empty set, the finite-element subsets, and PI itself. Since B (1, 0, y) # 0 
for any y at infinity, (1, 0) 0 7r,(v). So 7r,(v) is a proper algebraic set 
of Pl and hence is a finite set {(ci, di), i = 1, ... ,k} . Let F1 = {6i = 

arg(di/ci)lci O} and D1 = {re i E Cjr > 0, 0 E [O, 27r)\F1}. Then for any 
y at infinity and C E DI, we have (1, c, y) 0 v, that is, there exists a b E B 
such that b(l, c, y) 0 O. Since b E B, we have b = g1BY + + gsBy, 
where Y1, ... , ys are some points at infinity and g1, ... , gs are polynomials. 
From (3.9) we see that b4i E (qh +c, .. ., qn + cpn), i = 1,..., n. Hence, 

(Q) C (q+ + cj31 C+cn)'Y, and we conclude that, by Remark 2.2, 

h)iY c (p + l n + Cpno) Y 

This completes our proof. O 
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Under the same assumption of Lemma 3.2, we have the following three corol- 
laries: 

Corollary 3.1. Forfixed nonzero a, with a-' E D1 and any y at infinity, 

(H( , )) y = (Q) Y for all t E [O, 1) . 

Proof. From (3.2), 

H(a, z, t) = (1 - t)aQ(z) + tP(z) = (1 - t)a (Q(z) + t(a} t)a 

Since a-1 E D1, we have t/(l - t)a E D1 for t ? 1. The assertion follows. 0 

Corollary 3.2. For fixed a-1 E D1, t E [0, 1), and y at infinity, we have 

(1) The quotient rings S/(H(a, z, t)) and S/(Q) have the same localization 
at the maximal ideal Iy = If E Slf(y) = O}. That is, 

(S/(H(a, z, t)))(I ) = (sI(Q) )(Iy,) 

Here, Iy is considered as the maximal ideal in S/(H(a, z, t)) and S/(Q) 

through canonical projections. 
(2) For any prime ideal q of the ring S, considered as the prime ideal in 

S/(H(a, z, t)) and S/(Q), with zero set V(q) lying at infinity, we have 

(S/(H(a, z, t)))(q) = (S/(Q))(q) 

Proof. (1) For any f E (S/(Q))() ,we have f = (a + q)/b, where q E (Q) and 

b(y) 0 0. From Corollary 3.1, (H(a, z, t))"Y = ( (Q), so there exists 

r E S such that r(y) # 0 and rq E (H(a, z, t)). Thus, 

f r(a + q) (ra + rq) 

and hence, (S/(H(a, z, t)))(I) D (S/(Q))(J). The reverse inclusion follows by 
the same reasoning. 

(2) Let y E V(q); then Iy D q, and 

(S/(H(a, z, t)))(q) = ((S/(H(a, z, W))) (q) 

= ((S/ (Q))(IJ))(q) = (SI (Q))(q). 0 

Corollary 3.3. For al E DI, the intersection schemes of 

n 

nfh1(a, z, t) 
i=l 

at infinity are the same closed subscheme of the projective scheme pki x ... x pkm 

for all tE[0, 1). 

Proof. This follows from Corollary 3.2 and the local property of a scheme. 0 
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Lemma 3.3. Let P and Q satisfy conditions (1) and (2) of Theorem 2.1, and 
let 

(3.10) H(AO,IA, Z)= %OQ+)Alp 

with (AO,) l) E Pl. Then for each k, the irreducible component Ak of H 1(Q) 

passing through x k satisfies the following. 
(1) Let N be the set of points (AO) Al z) with z at infinity; then 

7r, (Ak n N) E P1 is a finite set, where zI is the natural projection; 
(2) (1 ,0) 0 7t,(Akn N). 

Proof. (1) By exercise 1I.3.12 of [7], dimAk = 1, since xk is a nonsingular 
point of Ak. Let Bj be any irreducible component of Akn N. Since Bj # Ak, 
by Theorem 2, X.5, of [8], dimBj < 1 . So (1) follows. 

(2) From the proof of Lemma 3.2, there exists a set D = {C \ a finite set} 
such that for AO = 1 and A, e D the intersection schemes of H(1, Al z) 
at infinity are the same. By Proposition 9.1.2 and Example 9.1.10 of [6], for 
AI E D and AO = 1, the number of solutions of (3.10) in affine space is the 
same (= r) . Let e be small enough such that 0 < I AI <e 1 implies A I E D . 

Since (1, 0, xk), k = 1, ..., r, are nonsingular, there exists 0 < E < E 

such that for each 0 < I AII < e, Q + 21P = 0 has r isolated affine solutions 
xk(A ) and 

(3.11) V(Q+AlP)nNnAk=0. 

Since Ak is connected, (3.1 1) implies 
k~~~~~ 

(3.12) V(Q) n N n Ak = 0. 

This completes the proof. 0 

Proof of Theorem 2.1. Le H(A, z) = AOQ(z)++A.P(z) with A (= OI ) E P1. A 
point (A, z) in P x M is said to be regular if and only if rank Hz (A, z) = n. 
For each x k, k = 1, ..., r, in T, let Ak be the irreducible component of 
V(H), the zero set of H in Pl x M, passing through xk . Let Bk be the set of 
points in Ak which are nonregular. Nonregularity can be described in terms of 
vanishing subdeterminants of Hz (A, z), which lead to a system of polynomial 
equations. Consequently, Bk is an algebraic set for each k. So 7 (Bk) is 
a proper algebraic set in Pl, because (1, 0) 0 7lr(Bk) by Lemma 3.3, and 
hence it is finite for each k. Let A = Ur= rl(Bk) = {(c, d')ji = 1, II. , 

F2 = {Hi = arg(d'/c'), i = 1,.., Ilci O }, and D2 = {reio E Clr > 0, 
0 E [0, 27r)\F2}. For a E C with a1 E D2, we have t/(1 - t)aED2 for all 
t E [a, 1) . That is, (1 , tl - t)a) e A( , so, Hza(nd t/l ()- t)at, z) is of rank n 
for any (1 , tl(l - t)a, z) with t E (O, 1) and z E V(H) . Repeated application 
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of the Implicit Function Theorem on the affine representation of the homotopy 

(3.13) 0 = H(a, z, t) = (I - t)aQ(z) + tP(z) = (I - t)aH t1 1- XZ) 

implies the smoothness property. 
For accessibility, it follows from Corollary 3.3 that for fixed a-l E DI1, the 

intersection schemes of H(a, z, t) at infinity are the same for all t E [0, 1). 
By Proposition 9.1.2 and Example 9.1.10 of [6], for each t in [0, 1) the number 
of solutions of (3.10) in affine space is the same (= r) . As a consequence, the 
xk (t)'s are the only solutions in affine space for each t E [0, 1). By a degree 
theory argument as in [3], or an algebraic argument as in [7], the accessibility 
property follows. 

By choosing D = D n D2, the proof of the theorem is completed. 0 

Proof of Proposition 2.1. For f E (p)Iz there exists an h E S such that h(z) $ 0 
and f h E (P) . From condition (b), f/h vanishes on the set of zeros of (Q) at 
infinity. Let x' = (xi, ..., xl), i = 1, ... , r, be the isolated zeros of Q in 
cn, and 

r n 

(3.14) F(x)= rlZ e,(x,-xi), 
j=l i=l 

where e, E C, i = 1,..., n, are chosen such that F(z) #0 . It is easy to see 
that F(zi) = 0 for each i = 1, ..., r, where z' is the corresponding point of 

i ~~~~~~~~~~~~~~~~~~~~k xi in M, and Fhf vanishes on V(Q). By the Nullstellensatz, (Fhf) E (Q) 
for some positive integer k. Since (Fh) (z) # 0, we have fk E (Q)Iz. By 
Theorem 48 of [13], (Q)Iz is a prime ideal. Hence, f E (Q)Iz , which completes 
our proof. 0 

ProofofProposition 2.2. (=*) For any p at infinity, the F chosen in (3.14) gives 
F(p) $ 0, and Fxo vanishes on V(Q). By the Nullstellensatz, (X0) E (Q)IP 
Now, for h E (P)"P there exist g E S = C[xo, ..., xn] and xl such that 
g(p) $ 0, xl(p) #0, and 

n 

hg = 2aiPj , 
i=1 

where a, E S, i = 1, ..., n. Without loss of generality, we may assume h/g 
is homogeneous of degree, say, s. Then, for large enough e and k, (hg)xl E 

(P)eC (QX)e=(Q)ekwhere j = e - s. Hence, h E (Q)P. 
(=) For f E S and I an ideal of S, let 

R(f, I) = {g E Slfg E} I 

If the zero set V(R(f, I)) of R(f, I) is empty, then the polynomials xi, i = 
0, . .. , n, vanish at every point of V(R(f, I)) . By the Nullstellensatz, (xj)a E 

R(f, I) for a > 1. Hence, when e is large enough, the set of homogeneous 
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polynomials of degree e in R(f , I), denoted by R(f , I)e, equals Se the set 
of homogeneous polynomials of degree e in S. That is, 

(3.15) R(Vf I)e Se. 
kk For fixed k , let f E (P, xD0, e To prove f e (Q , x )e for large enough 

e, from (3.15), it suffices to show V = V(R(f Q, x))) = 0. It is clear 
that xo e R(f, (Q, x0)), so V is supported at infinity. But for any p at 
infinity, (2.4) implies that there exists h E 5, h(p) 0, and fh E (Q) . Hence, 
h E R(f I (Q, x4)) and p f V. This completes the proof. 0 

APPENDIIX 

For P-= (p1, p2) in (15) and Q=(q , q2) in (1.6), let H =(h , h2) 
(I - t)aQ + tP, where a is any nonzero number in C which is not a negative 
real number. To be precise, 

(1) hlaa I1 , x2 t) - -( J(2-1J +t(x .)O 

(2) h2-(a , x, , X2 , t)- }t)a( 2+ XIX2) + t( + X2) = o + 
Multiplying (I) by x2 (1 - t)a and subtracting t x (2) yields 

(3) '[(I - t)at+(- t)2a + x[-( - t)at - t2X[_(-t) a -t = 0. 

From (3), we can see that for each fixed a E C and t E (0, 1), the zero set of 
H(a, x 1,x2 t) is (x, 1 x2) = (( - t)aft, O), (d1,, e), and (d2, e2) , where 

(4) -b + V--4cb -vr -4c 
(4) e- 2 -- e2 i 29, 

(I -t)a -es 1=1,2, 
or 

[(6d e,)2 - l)1 - t)a - (ei)2t = (6) di i --- = 13,23, 
I 

with 
b -t _ _t2a2 t2 

b (I 7- t_ - -t)a[t+(I t)a] 
It is easy to see that as t 0, we have b 0, c -1 . Hence, from 

(4), and (5). (d1 e, )-(- 1) and (d2, e2) -(l1-). When t - I , then 
- 0,I fi s bounded and 

f --bh+ 2 -4c=b (l+ I ) 
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However, 
c_ [t2 + -t)2a 2] 
b = lt[t+((- t)a] as t 1 

Hence, f -2 and e1 -. -1 as t --I . From (6), (di, e) (1 -1). 
Similarly, 

2c /4c\~~~4 
= b (-1- [I b2c +0 ? 

4c 

-2b+ 2c +o 
4c' 

When t 1 then b + oo , hence, g +oo and e2 - +oc. Therefore, 
(d2, e2) (+x, ?x) from (6). 
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